Sparse Coding-Based Method Comparison For Land-Use Classification
نویسندگان
چکیده
منابع مشابه
Sparse Coding - Based Method Comparison for Land - Use Classification
Land-use classification utilize high-resolution remote sensing image. The image is utilized for improving the classification problem. Nonetheless, in other side, the problem becomes more challenging cause the image is too complex. We have to represent the image appropriately. On of the common method to deal with it is Bag of Visual Word (BOVW). The method needs a coding process to get the final...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملHierarchical Coding Vectors for Scene Level Land-Use Classification
Land-use classification from remote sensing images has become an important but challenging task. This paper proposes Hierarchical Coding Vectors (HCV), a novel representation based on hierarchically coding structures, for scene level land-use classification. We stack multiple Bag of Visual Words (BOVW) coding layers and one Fisher coding layer to develop the hierarchical feature learning struct...
متن کاملImage Classification Algorithm Based on Sparse Coding
In this paper, the sparse coding and local features of images are combined to propose a new image classification algorithm. Firstly, online dictionary learning algorithm is employed to train the visual vocabulary based on SIFT features. Secondly, SIFT features are extracted from images and these features are encoded into sparse vector through visual vocabulary. Thirdly, the images are evenly di...
متن کاملSparse coding based features for speech units classification
In this paper a sparse representation based feature is proposed for the tasks in speech recognition. Dictionary plays an important role in order to get a good sparse representation. Therefore instead of using a single over complete dictionary, multiple signal adaptive dictionaries are used. A novel principal component analysis (PCA) based method is proposed to learn multiple dictionaries for ea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Ilmu Komputer dan Informasi
سال: 2017
ISSN: 2502-9274,2088-7051
DOI: 10.21609/jiki.v10i2.480